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Evacuated or gas-filled waveguides are generally used to transport high-current electron 
beams. An important characteristic of such a system is tlle limiting current of relativistic 
electrons which can be transmitted through a drift space without charge compensation (the 
limiting vacuum current). The standard method of calculating the limiting vacuum current is 
based on an analysis of the solution of the electrostatic problem far from the injecting 
plane. Smith and Hartman [i] used this method to find the limiting current for a nonrela- 
tivistic beam; Bogdankevich and Rukhadze [2] generalized this result for a relativistic beam 
and derived an interpolation formula for the limiting current of the form 
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e 

(i) 

where m and e are the rest mass and charge of the electron, R and a are, respectively, the 
radii of the waveguide and beam, Yo is the beam energy in units of mc 2, and c is the speed 
of light. 

In view of the fact that Eq. (i) was derived by completely neglecting the effect of the 
injection plane on the potential distribution in the drift space, there is a question of 
whether the theoretical limiting vacuum current can actually be attained (cf., e.g., [3]). 
In principle a virtual cathode (a singularity in the potential distribution) may be formed 
near the injection plane, and this can lead to cutoff of the beam current for values smaller 
than that given by Eq. (I). In other words, a special proof is: required that the limiting 
current predicted from an analysis of the one-dimensional electrostatic problem far from 
the injection plane can actually be attained. Ryutov [3] gave such a proof for an infinitely 
narrow beam. It is clearly of interest to investigate the quasistatic potential distribution 
in a two-dimensional transport system (waveguide), taking account of the injection plane, in 
order to predict the limiting current actually attainable. We have performed such an in- 
vestigation and have found the dependence of the limiting vacuum current on the beam param- 
eters in a two-dimensional system. 

Supposing a beam with current Jb passes along the axis of a waveguide located in an 
external magnetic field Ho, which is strong enough to ensure the complete magnetization of 
the electron beam 

H~o/8n >> nbmc2?o, 

where n b is the electron density in the beam. For beam currents smaller than the limiting 
value the electrons undergo single-current motion which is described by the following system 
of equations: 

A~ = 4nen~(r, z), mc~(7 - -  7o) ---- e~(r, z), 

ne(r, z) re(r, z) = nbvb, 

where ne(r, z) and ve(r, z), the density and velocity of the electron beam, depend on the 
coordinates: v b is the velocity of the injected beam. 

Eliminating v e and n e from the system of equations, and transforming to the dimension- 
less variables 
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x~_r/R, g = z / R ,  ~ e ~ / m c  ~, a~a lH ,  lb~-.(4elmc~)Jb, 

we obtain the following nonlinear equation for the dimensionless potential ~: 

where 

x ox x ~-x + oF" - ~'~ ~ ( ~ o  + r  , t '  

O(x)  = {0,  x < O ,  
1, x~>O.  

(2) 

By iterating with respect to the parameter Ib, the solution of Eq. (2) can be written 
in the form 

(~D 0 == O~ 

O~ = dx'dy'G (x, x ,  y, y') II [cO o (x', y')], 
. , .  

~ '- (D~ = dx'dy'G (x, x ,  y, y') H [(D,~_~ (x', Y')I, 

(3) 

where G(x, x ' ;  y, y') is the Green's function for Eq. (2), and the function ~(~) is given by 

fb [vo + �9 (x, y)] o (~  - -  x) 
H [ ~  (x, y)] = ~2 ~/[Vo + �9 (x, ~)]~ - ~ ' 

As shown by Kucherov [4], such a solution is valid up to the limiting values of the beam 
current given by Eq. (i). Therefore, the limiting current can be found from (3) by equating 
the potential on the axis to the kinetic energy of the beam. We note that the situation 
actually turns out to be more subtle: When the beam current reaches the limiting value a 
flux of reflected electrons appears. In this case the single-current Eq. (2) becomes invalid, 
because its right-hand side becomes infinite, and the iterative series (3) diverges. There- 
fore, the limiting current can be defined as the maximum for which a solution of the form 
(3) is still valid. 

We show that the proposed definition of the limiting current is equivalent to that 
introduced earlier in [1-3], and find the limiting currents for a cylindrical wavelength with 
and without taking account of the injection plane. 

In the simplest case, when the electron beam travels between the infinite plane elec- 
trodes, the solution of Eq. (2) can be reduced to quadratureso This approximation corre- 
sponds to the motion of electrons at an infinite distance from the injection plane in a gap 
of width 2d between two infinite coaxial cylinders as the radius of the inner cylinder R~ + ~. 
Then by replacing x by x~ + R1/d, Eq. (2) takes the form (everywhere from now on a = i) 

d% _ ~ ~o + ~ , ~ (1) = O'  (0) = O. 
ax~ - ~b ~(v7 ~7 ~ - l 

The solution of this equation determining the relation between the potential ~ at x = 
0(~, = ~(0)) and the current has the form 

Figure 1 shows the dependence of the potential ~, on the beam current I b for various 
values of the beam energy yo(l --Yo = 2; 2 --yo = 3; 3 -- Yo = 5). Although this relation is 
two-valued, only the lower branches of the curves in Fig. 1 have physical meaning. The 
limiting current in this case is defined as the current corresponding to dIb/d~, = 0 [i, 3]. 

An iterative series of type (3) in the present case is given by 
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r  (x) = O, 
, , ,  

1 

@n (x) = Ib S G (x, x') II [0,~-1 (x')] dx', 
0 

(4) 

where 

V(x' z') = {tt-- x, 
O ~ z ~ z ' ,  

By summing the iterative series (4) numerically a relation can be obtained between the 
potential and the beam current and used to calculate values of the limiting currents. The 
values obtained agree with the analytic results shown in Fig. i to within the limits of ac- 
curacy of the machine calculations.* This indicates that the limiting currents can be calcu- 
lated accurately enough by our iterative process. 

We investigate first the behavior of the potential far from the injection plane, and 
find the dependence of the limiting current on the beam energy. In this approximation Eq. 
(2) reduces to the form 

dx x ~ x  ~ / ( ~  - l (5)  

This equation can be solved by numerical summation of the iterative series (4), where 

/lnx', O ~ x ~ x ' ,  
G ( x ' x ' ) = ( I n x ,  x'<~x<~ l. (6) 

The values of the potential ~, calculated by this method for points on the beam axis far 
from the injection plane are plotted in Fig. 2 as functions of the beam current I b for a cy- 
lindrical waveguide (i, yo = 1.5; 2, yo = 2; 3, yo = 3). 

The limiting current I, for a given Yo is determined from the condition dlb/d~, = 0. 
We note that the approximate relation (i) can be obtained from the iterative solution of (5). 
As the zero approximation we take ~o(X) = ~,. Then in the first approximation the potential 
distribution has the form 

1 

Y )]/  ~'~ § q~* ~1 (x) = Ib x'dx'G (x, x I (% + r i 
0 

Performing the integration, setting x = 0, and expressing I b in terms of the remaining param- 
eters, we obtain 

*The calculations were limited to a relative accuracy of ~ 1%, since on the one hand this 
accuracy is quite satisfactory for comparison with approximate formulas and experiments, and 
on the other hand does not require a large amount of machine time. 
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Ib = -- 4(I), F't -- i/(yo .-F (I),)t 

From the last expression the limiting current in the first approximation is 

s,, = _ i),: ', ( 7 )  

which in dimensional variables agrees with Eq. (i). 

Figure 3 shows the dependence of the limiting current on the beam energy. Curve 2 
corresponds to Eq. (7); curve 1 was obtained from the iterative solution (6). A comparison 
of these shows that the absolute error of Eq. (7) increases with increasing beam energy. At 
the same time the relative error (I, -- 1,1)/I, in the range 1 < yo < 5 is ~ 10-20%, and in- 
creases as yo § i. The approximate expression for curve 1 is given by 

I ,  = 4 (~:~-1)3 /*  ( t  + ~ )  (s) 

with an accuracy of 3% for values of the energy in the range 1 < yo < 20. 

Taking account of the injection plane requires using Eq. (2) without simplifying as- 
sumptions. For a semiinfinite cylindrical waveguide the boundary conditions for Eq. (2) 
are 

cx( ,y )=~O,y)=o ,  ~(x,o)  ~ ( x ,  oo) o. 

We seek the solution of Eq. (2) in the form of the expansion 

(x, y) = ~ 4 (z:)  u~ (y), 
h=l 

where Jo is the zero-order Bessel function (Jo(%k) = 0). 

Then for the function Uk(y) we obtain the equation 

1 

d2Uk ~U~ = 2Z----~--b ~ dx'x'J o (~kz') H [~ (x', y)]. 

The Green's function for this equation has the form 

c (y, y')  = 2-f~ 

The potential ~(x, y) is given by the iterative series 

~o (z, y) = O, 

co 1 

= "~ (~k---~ 3o (y' y') dy' o x ' d x ' 4  (~,~x') II ((Do), 

: ~  , o o  ] 

O , ~ x , y ) = 2 l b  z .  T2~ ,_, y')dy' x'dx'Jo(khx')H(CD~-~). 
h = l  ~ 1 \ : , ' l  t 0 
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The dependence of the limiting beam current on its energy was calculated by computer 
for a = i. Within the limits of accuracy of the calculation (~1%) this dependence agrees 
with Eq, (8)~ 

Tile presence of the injection plane has practically no effect on the values of the 
attainable limiting vacuum current~ This results from the fact that the potential in the 
system, as shown in Fig. 4, is smooth; no virtual cathode is observed for currents smaller 
than that determined by Eq. (8). Figure 4 also shows that at distances of the order of two 
waveguide radii from the injection plane the potential becomes the same as for an unbounded 
waveguide. 

Thus, by investigating the dependence of the electrostatic potential distribution of a 
high-current electron beam on its energy in a two-dimensional transport system we have found 
the values of the limiting vacuum current, We have shown that taking account of the effect 
of the injection plane on the potential distribution has practically no effect on the values 
of the limiting current, since there are no singularities in the potential close to the in- 
jection plane~ 
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